Produces forecasts from a trained model.

# S3 method for RW
forecast(
  object,
  new_data,
  specials = NULL,
  simulate = FALSE,
  bootstrap = FALSE,
  times = 5000,
  ...
)

Arguments

object

The time series model used to produce the forecasts

new_data

A tsibble containing future information used to forecast.

specials

(passed by fabletools::forecast.mdl_df()).

simulate

If TRUE, prediction intervals are produced by simulation rather than using analytic formulae.

bootstrap

If TRUE, then forecast distributions are computed using simulation with resampled errors.

times

The number of sample paths to use in estimating the forecast distribution when bootstrap = TRUE.

...

Additional arguments for forecast model methods.

Value

A list of forecasts.

Examples

as_tsibble(Nile) %>% model(NAIVE(value)) %>% forecast()
#> # A fable: 2 x 4 [1Y] #> # Key: .model [1] #> .model index value .mean #> <chr> <dbl> <dist> <dbl> #> 1 NAIVE(value) 1971 N(740, 27998) 740 #> 2 NAIVE(value) 1972 N(740, 55995) 740
library(tsibbledata) aus_production %>% model(snaive = SNAIVE(Beer ~ lag("year"))) %>% forecast()
#> # A fable: 8 x 4 [1Q] #> # Key: .model [1] #> .model Quarter Beer .mean #> <chr> <qtr> <dist> <dbl> #> 1 snaive 2010 Q3 N(419, 373) 419 #> 2 snaive 2010 Q4 N(488, 373) 488 #> 3 snaive 2011 Q1 N(414, 373) 414 #> 4 snaive 2011 Q2 N(374, 373) 374 #> 5 snaive 2011 Q3 N(419, 747) 419 #> 6 snaive 2011 Q4 N(488, 747) 488 #> 7 snaive 2012 Q1 N(414, 747) 414 #> 8 snaive 2012 Q2 N(374, 747) 374