Simulates future paths from a dataset using a fitted model. Innovations are
sampled by the model's assumed error distribution. If bootstrap
is TRUE
,
innovations will be sampled from the model's residuals. If new_data
contains the .innov
column, those values will be treated as innovations.
# S3 method for class 'RW'
generate(x, new_data, bootstrap = FALSE, ...)
as_tsibble(Nile) %>%
model(NAIVE(value)) %>%
generate()
#> # A tsibble: 2 x 4 [1Y]
#> # Key: .model, .rep [1]
#> .model index .rep .sim
#> <chr> <dbl> <chr> <dbl>
#> 1 NAIVE(value) 1971 1 1170.
#> 2 NAIVE(value) 1972 1 1350.
library(tsibbledata)
aus_production %>%
model(snaive = SNAIVE(Beer ~ lag("year"))) %>%
generate()
#> # A tsibble: 8 x 4 [1Q]
#> # Key: .model, .rep [1]
#> .model Quarter .rep .sim
#> <chr> <qtr> <chr> <dbl>
#> 1 snaive 2010 Q3 1 396.
#> 2 snaive 2010 Q4 1 509.
#> 3 snaive 2011 Q1 1 415.
#> 4 snaive 2011 Q2 1 370.
#> 5 snaive 2011 Q3 1 415.
#> 6 snaive 2011 Q4 1 510.
#> 7 snaive 2012 Q1 1 428.
#> 8 snaive 2012 Q2 1 354.