Simulates future paths from a dataset using a fitted model. Innovations are
sampled by the model's assumed error distribution. If bootstrap
is TRUE
,
innovations will be sampled from the model's residuals. If new_data
contains the .innov
column, those values will be treated as innovations.
# S3 method for RW generate(x, new_data, bootstrap = FALSE, ...)
x | A fitted model. |
---|---|
new_data | A |
bootstrap | If |
... | Additional arguments for forecast model methods. |
#> # A tsibble: 2 x 4 [1Y] #> # Key: .model, .rep [1] #> .model index .rep .sim #> <chr> <dbl> <chr> <dbl> #> 1 NAIVE(value) 1971 1 685. #> 2 NAIVE(value) 1972 1 881.#> # A tsibble: 8 x 4 [1Q] #> # Key: .model, .rep [1] #> .model Quarter .rep .sim #> <chr> <qtr> <chr> <dbl> #> 1 snaive 2010 Q3 1 402. #> 2 snaive 2010 Q4 1 507. #> 3 snaive 2011 Q1 1 412. #> 4 snaive 2011 Q2 1 346. #> 5 snaive 2011 Q3 1 402. #> 6 snaive 2011 Q4 1 466. #> 7 snaive 2012 Q1 1 443. #> 8 snaive 2012 Q2 1 357.