Simulates future paths from a dataset using a fitted model. Innovations are
sampled by the model's assumed error distribution. If bootstrap
is TRUE
,
innovations will be sampled from the model's residuals. If new_data
contains the .innov
column, those values will be treated as innovations.
# S3 method for model_mean generate(x, new_data, bootstrap = FALSE, ...)
x | A fitted model. |
---|---|
new_data | A |
bootstrap | If |
... | Additional arguments for forecast model methods. |
#> # A tsibble: 4 x 4 [30m] <Australia/Melbourne> #> # Key: .model, .rep [1] #> .model Time .rep .sim #> <chr> <dttm> <chr> <dbl> #> 1 avg 2015-01-01 00:00:00 1 5425. #> 2 avg 2015-01-01 00:30:00 1 4485. #> 3 avg 2015-01-01 01:00:00 1 4731. #> 4 avg 2015-01-01 01:30:00 1 2698.