Applies a fitted ETS model to a new dataset.
# S3 method for ETS refit( object, new_data, specials = NULL, reestimate = FALSE, reinitialise = TRUE, ... )
object | The time series model used to produce the forecasts |
---|---|
new_data | A |
specials | (passed by |
reestimate | If |
reinitialise | If TRUE, the initial parameters will be re-estimated to suit the new data. |
... | Additional arguments for forecast model methods. |
lung_deaths_male <- as_tsibble(mdeaths) lung_deaths_female <- as_tsibble(fdeaths) fit <- lung_deaths_male %>% model(ETS(value)) report(fit)#> Series: value #> Model: ETS(M,A,A) #> Smoothing parameters: #> alpha = 0.0002065548 #> beta = 0.0001865257 #> gamma = 0.000118306 #> #> Initial states: #> l[0] b[0] s[0] s[-1] s[-2] s[-3] s[-4] s[-5] #> 1671.676 -4.334248 373.1746 -121.3157 -246.1697 -484.8581 -476.2192 -370.1939 #> s[-6] s[-7] s[-8] s[-9] s[-10] s[-11] #> -303.5806 -207.384 122.0022 483.3319 620.3601 610.8525 #> #> sigma^2: 0.009 #> #> AIC AICc BIC #> 1033.474 1044.807 1072.177fit %>% refit(lung_deaths_female, reinitialise = TRUE) %>% report()#> Series: value #> Model: ETS(M,A,A) #> Smoothing parameters: #> alpha = 0.0002065548 #> beta = 0.0001865257 #> gamma = 0.000118306 #> #> Initial states: #> l[0] b[0] s[0] s[-1] s[-2] s[-3] s[-4] s[-5] #> 586.8764 -0.7008449 129.4235 -60.401 -108.8126 -185.465 -189.2346 -149.2135 #> s[-6] s[-7] s[-8] s[-9] s[-10] s[-11] #> -134.8698 -70.64105 45.28081 204.0216 279.4489 240.4628 #> #> sigma^2: 0.0118 #> #> AIC AICc BIC #> 903.5169 910.8854 935.3903