Simulates future paths from a dataset using a fitted model. Innovations are sampled by the model's assumed error distribution. If bootstrap is TRUE, innovations will be sampled from the model's residuals. If new_data contains the .innov column, those values will be treated as innovations.

# S3 method for ARIMA
generate(x, new_data, specials, bootstrap = FALSE, ...)

Arguments

x

A fitted model.

new_data

A tsibble containing future information used to forecast.

specials

(passed by fabletools::forecast.mdl_df()).

bootstrap

If TRUE, then forecast distributions are computed using simulation with resampled errors.

...

Additional arguments for forecast model methods.

See also

Examples

fable_fit <- as_tsibble(USAccDeaths) %>% model(model = ARIMA(value ~ 0 + pdq(0,1,1) + PDQ(0,1,1))) fable_fit %>% generate(times = 10)
#> # A tsibble: 240 x 4 [1M] #> # Key: .model, .rep [10] #> .model index .rep .sim #> <chr> <mth> <chr> <dbl> #> 1 model 1979 Jan 1 8239. #> 2 model 1979 Feb 1 8186. #> 3 model 1979 Mar 1 8329. #> 4 model 1979 Apr 1 8408. #> 5 model 1979 May 1 8900. #> 6 model 1979 Jun 1 9992. #> 7 model 1979 Jul 1 11007. #> 8 model 1979 Aug 1 10748. #> 9 model 1979 Sep 1 9502. #> 10 model 1979 Oct 1 10566. #> # … with 230 more rows